Postnatal imaging in fetally detected hydronephrosis

Riccabona Michael
Dept. of Radiology, Div. of Pediatric Radiology
University Hospital LKH Graz, Austria

Copenhagen 2012
Introduction

• Increasing number of neonatal urinary tract imaging requests
 – due to prenatally recognized hydronephrosis
 • fetal screening
 • family screening
Introduction

• Task of postnatal imaging
 – reassessment & confirmation & specification
 – diagnostic work-up
 – relieve of parents
 • doctors & nurses ...

Aim: reliable diagnosis

 – early enough
 • to prevent potential harm

 – not too early
 – not to miss pathology, one usually has time
Introduction

• Main questions
 – Whom?
 – How?
 – When?

• Economically feasible
• Therapeutically relevant
• Diagnostically reliable
 – no diagnostic overkill
 – without missing important conditions
Introduction

• Existing limitations & problems
 – quality of prenatal US
 • varying cut of values for “pathology”
 – standardization ...
 – information about when how big?
 • reports & images available?
 • other aspects than HN?
 – coverage of prenatal screening
 = postnatal screening necessary?
Introduction

• Existing limitations & problems
 – quality & coverage of prenatal US screening
 – new task of postnatal imaging = **efficacy**
 • new (conservative) treatment & management
 • as little invasive as possible (ALARA)
 – which method is diagnostically useful & reliable?
 • as early as meaningful and necessary
 – not too early to avoid unnecessary investigations
 – not too late to prevent avoidable deterioration
 = timely recognize kidneys that will need surgery
• socio-economic pressure
Plan

• How:
 = imaging methods
 + which conditions to be considered

• Whom:
 = selection criteria
 – entrance point
 – additional imaging

• When:
 = when is which kind of imaging useful
 + some image examples for typical developments...
How: imaging modalities

- **Ultrasound** (including modern methods)
- **VCUG**
 - ce-VUS?
- **MRU**
- **Scintigraphy**
 - DMSA static renal scintigraphy
 - MAG3 diuretic renography
 - radionuclide cystography
- **No role for CT** (and IVU, if MRI available)
US

• First investigations in all HN patients
 – proper quality essential
 – high frequencies, linear Tdx, HI, CDS ...
 – knowledge & device handling
 – when? which criteria?
US quality & requisites

• Detailed analysis of entire urinary tract
 – bladder: wall, content, size, bladder neck
 ostium, ureter, urachus, urethra ...
US quality & requisites

- Detailed analysis of entire urinary tract
 - bladder: wall, ostium, content, bladder neck ...
 - kidney: shape, position, size, parenchyma, cysts perfusion, dysplasia ...
US quality & requisites

• Detailed analysis of entire urinary tract
 – bladder, kidney
 – collecting system & ureter:
 • dilatation? content? peristalsis? ...
US quality & requisites

• Detailed analysis of entire urinary tract
 – bladder, kidney, collecting system & ureter
 – always look at
 • pre- & post-void situation
 • surrounding structures
 • genitalia
ESUR / ESPR procedural recommendation: pediatric urosonography

well hydrated patient, full bladder, adequate equipment & transducer & training ...

urinary bladder: size (volume), shape, ostium, wall, bladder neck
include distal ureter & retrovesical space/inner genitalia, urachus? ...
optional: CDS for urine inflow, perineal US, scrotal US ...

kidneys: lateral and/or dorsal, longitudinal & axial sections
parenchyma? pelvo-caliceal system?
standardised measurements in 3 dimensions & volume calculation
if dilated: max. axial pelvis & calix, narrowest parenchymal width, + UPJ
optional: (a)CDS & duplex-Doppler ...

post void evaluation
bladder: residual volume, bladder neck, shape & configuration
kidneys: dilatation of pelvo-caliceal system / ureter changed?
optional: contrast-enhanced urosonography, 3DUS ...

additional abdominal US survey recommended
US criteria

• Grading of dilatation = “HN scale”

⇒ HN: standardized grading
 – important for comparison
 • less measurement based
 • improves understanding
 – prerequisite
 • standardized US conditions
Pediatric HN grading system

Adapted from Hofmann & SFU classification

HN 0 = collecting system not or minimally visible, considered normal
HN I = just renal pelvis visible, axial diameter <5(-7) mm, considered normal
HN II = axial pelvis diameter 5/7-10 mm, some calices with normal fonices visible
HN III = marked dilatation of calices, pelvis >10 mm, rounded papilla & fonices without parenchymal narrowing
HN IV = gross dilatation of collecting system + narrowing of parenchyma
HN V = used in some places to communicate extreme HN with only thin, membrane-like residual renal parenchymal rim

Pediatr Radiol 2008; 38
US “extended criteria”

- Grading of HN
- Other important features
 - indicating pathology
 - justifying further imaging
 - bladder pathology
 - ureteral abnormalities
 - renal parenchymal changes
 - urothelial sign

⇒ not only dilatation and/or mm matter!
VCUG

• Irreplaceable, but stricter indications
 – anatomy: diverticula, urethra, genitography ...
 – function, VUR
 • preoperative, DD of obstructive uropathy
VCUG

• Irreplaceable, but strict indications

• Technique: pulsed fluoroscopy
 – grids & filters, dose ...
 • age & size dependent
 – ALARA principle
 • no blind films
 ⇒ short screening time
 ⇒ spot films only if necessary
 • last image hold captures often suffice
 – cyclic filling, potentially modified technique
VCUG - ESUR recommendation

No diet restriction or enema, urine analysis, potentially antibiotics ...

Catheterism: feeding tube, 4-8 french or suprapubic puncture
Latex precaution: neuro-tube defect, bladder extrophy ...

Fluoroscopic view of renal fossae & bladder, initial + early filling

Bladder filling with radiopaque contrast
gravity drip = bottle 30-40 cm above table, watch dripping, AB?

Fluoroscopy: signs of increased bladder pressure, imminent voiding, urge ...
bilateral oblique views of distal ureters, include catheter
document VUR, include kidney (spot film => intra-renal reflux)

When voiding: remove catheter, unless cyclic VCUG = 3 fillings, 1st y(s)
female: spot of distended urethra (slightly oblique)
male: 2 spots during voiding (ap & high oblique / lateral)
include renal fossae during voiding, if VUR => spot film

After voiding: ap view of bladder & renal fossae
assess contrast drainage form kidney if refluxed

Note: VUR staging, minimize fluoroscopy time & spot films, no blind film
Contrast enhanced VUS

- Initial conventional US
- Fill bladder with NaCl
- Fractional CM instillation
 - 1% of filling volume (SonoVue)
- Constant evaluation of bladder + ureter + kidney
 - before & after CM
 - during & after voiding
Contrast enhanced VUS

- Usually good visualization of CM in kidney
 - using modern imaging techniques
 - based on non-linear sound properties
 - detection rate ce-VUS ≥ VCUG
 - grading achievable & established
 - recommended for girls & follow-up
ce-VUS: urethra?

- Urethra assessable
 - perineal approach
 - during voiding
 - repeated filling
 - as in VCUG

- Alejandro Maté, Eur Radiol 2003
- Theresa Berrocal, Radiology, 2005
How to do ce-VUS

No diet restriction or enema, urine analysis ...

- **Catheterism:** feeding tube, 4-8 french, or suprapubic puncture anaesthetic lubricant or coated plaste

- **Standard US of bladder & kidneys (supine, ± prone)**

- **Bladder filling with NaCl (only from plastic containers)**

- **US contrast medium,** e.g. Levovist® 300 mg/ml, 5-10% of bladder volume slow, US- monitoring, potentially fractional administration

- **Peri-/ post-contrast US of bladder & kidneys**

 US modalities: fundamental, HI, CDS, contrast specific methods

 alternate scans of right & left side during & after filling

- **During + after voiding: US of bladder & kidneys**

 supine ± prone, laying or sitting or standing

⇒ **VUR diagnosis:** echogenic micro-bubbles in ureters or renal pelves
DMSA scintigraphy

= static renogram

- Renal parenchyma assessment
 - tracer: Tc 99m DMSA iv
 - scan after 2-3 h
 - uptake only in normal renal parenchyma
DMSA scintigraphy

= static renogram

- Renal parenchyma assessment
 - tracer: Tc 99m DMSA iv
 - uptake in normal renal parenchyma
 ⇣ (split) renal function
 ⇣ aPN, scaring ...
 ⇣ (regional) dysplasia
 - restricted use in HN & neonates
 • renal immaturity ...
 • needs good function
MAG3 scintigraphy

= diuretic / dynamic renography

• Dynamic assessment of renal function
 – arterial & parenchymal phase
 – excretion & drainage phase
 – diuretic stimulation
MAG3 diuretic scintigraphy

- Dynamic assessment of renal function
 - arterial & parenchymal phase
 - excretion & drainage phase
 - diuretic stimulation
 - “grade” obstruction
 - type I-IV°
 - relative function
MAG3 diuretic scintigraphy

- Dynamic assessment of renal function
 - arterial & parenchymal phase
 - excretion & drainage, diuretic stimulation
 - grade obstruction = type I-IV°
 - consider restrictions
 - needs sufficient renal function
 - not useful before 4 - 6 weeks, not in dysplasia ...
 - “Windkessel” effect - elasticity of renal pelvis
 - often equivocal findings - “type III b”, what to do?
 - standardized hydration
 - impact of positioning

Copenhagen 2012
MR-Urography: the method

- Different ways to do MR of urinary tract
 - “simple” anatomic imaging
 - functional imaging
 - visual semi-quantitative assessment
 - similar to IVU or CT
 - “area under curve”
 - single or multiple slice(s)
 - repeated acquisitions
 - “Patlok Plot” based assessment
 - 3d-sequence
 - dynamic assessment
MRU in infants: how

- Established
 - for anatomic assessment
- Basic imaging relatively easy
 - T2, T1
 - challenges in infants
 - sedation, hydration, catheter?
 - add other sequences
 - fat saturation, HR? ...
 - IR, GRE, ...
 - MRA needed?
Basic MRU techniques

- **T2-MRU**: HASTE, TRUE-FISP, RARE, PACE..

 = heavily T2 weighted sequence, "T2 MR-urogram"

 ⇒ anatomic display of collecting system

 + overview
Basic MRU techniques

- **T2-MRU:** HASTE, TRUE-FISP, RARE, PACE ..
 = heavily T2 weighted sequence, "T2 MR-urogram"
 ⇒ anatomy of collecting system + overview
 + high resolution (HR)-3D views? thin slices!
 - isotropic volume ...
Basic MRU techniques

- Contrast-enhanced MRU
 - T1 weighted sequences (t)SE
 - pre- & post Gd, fs, serial ...
 + fast T1w-GRE sequences
Basic MRU techniques

• Dynamic diuretic (functional) MRU
 = dynamic imaging after contrast = “T1-MRU”
 – non-linear (cyclic) Gd iv.
 • NSF? GFR?
 • immaturity?
 – Furosemid iv.
 • hydration
 – serial acquisitions
 • delayed scans?
 – 3d views
 • MIP ...
Basic MRU considerations

• Challenges to be considered in infants
 – small field of view = little signal
 – small structures ⇒ ↑ spatial resolution
 • less fat – discrimination more difficult
 – no / less cooperation ⇒ ↑ temporal resolution
 • sedation? monitoring ...
 • diaphragmatic triggering / gating ...
 • “BLADE” / “PROPELLER” ...
 – functional & anatomic queries
 • physiological differences, immaturity ...

⇒ individually optimize protocol & sequence
Basic MRU considerations

• Challenges to be considered in children
 – small field of view, small structures
 – no / less cooperation, different queries

⇒ Use modern techniques
 – fast sequences
 – strong gradients
 – motion insensitive sequence
 – multi-canal coils
Basic MRU applications

- Practically has replaced IVU
 - non ionizing
 - anatomic information
 - non-functional units assessable
Basic MRU applications

• Practically has replaced IVU

Some examples:
✓ grading?
 - semiquantitative
 - visual impression
Basic MRU applications

- Has replaced IVU
 - duplex kidneys
 - complex anatomy
Procedural recommendation: Paediatric MR Urography [MRU]

INDICATION
Always previous US (+ reflux study, if indicated = VCUG, VUS, or RNC)
Queries: e.g. malformation, obstructive uropathy, complicated infection, tumour, post-traumatic, cystic disease, transplant ...

PREPARATION:
- **General:** Place line in advance, creatinine for CM-studies (GFR calculation - NSF), mock unit / visit to magnet
- **Hydration:** NaCl or Ringer’s solution (20 ml/kg for 1 hour [max. 1l]), empty bladder before entering the magnet
- **Sedation:** priority to immobilization (feed & wrap), or no (or minimal) sedation. Deep sedation only if necessary
- **Bladder catheter:** deeply sedated patients who cannot empty the bladder (particularly after Furosemide)
 - potentially also in high grade VUR patients with dynamic queries
 - Polyethlene catheter without balloon, urine bag, below level of MR table
- **Diuresis:** Furosemide 1 mg/kg IV (max. 20 mg), 15 min before to beginning of morphologic investigation
 - timing may vary in dynamic-diuretic functional protocols (F -20, F -15, F +10, F +15, F +20)

MRU examination*1:
Positioning: Supine position with arms above the head
SCOUT: Sagittal important for correct oblique coronal plane, FOV: above both diaphragms to below symphysis
 - potentially SSFP axial & coronal (+ sagittal)

Heavily T2-weighted sequences coronal (e.g., T2-3D TSE fs, 2D-thin & -thick slice [3D-urogram], HASTE/RARE/PACE, ...)?
T2-IR sequence, non-enhanced T1-weighted & GRE sequence
 - NOTE: 3 slices anterior + posterior of kidneys for GRE; adjust FOV

CM-Application - cyclic Gd compounds*2 iv. in first year of life (renal immaturity ...) & bilateral uropathy, or GFR ↓
Repeated serial coronal T1-3D sGRE fs, for 3 - 5 min.
 - NOTE: subtraction helpful - particularly for MRA, if achievable; for MRA use motor pump & flow of 1(-2)ml/sec
T1 axial & coronal (fs), + sagital if needed
Final coronal T1-3D sGRE fs; or additional delayed imaging up to 20 min p.i.
 - potentially changing to prone position or post void scan (when delay in CM washout)

*1 functional MRU not yet standardised and not addressed
 - Furosemid timing, contrast dose & application may need adaptation for various queries tailored protocols are essential
 - e.g., MRA, diffusion, additional sagital acquisitions

*2 non-cyclic compounds can be used in older children according to approval
 - Gd-dose as recommended by manufacturer

Pediatr Radiol 2010: 40
Functional diuretic MRU

• Different approaches
 - single slice, area-under-curve
 - 3D sequence, Patlok-plot ...

• Essential features:
 - diuretic stress
 - standardised hydration
 - (semi)quantitative
 • (split) renal function
 • urinary drainage
 - sedimentation issues
 - T2* effects...

Copenhagen 2012

Rohrschneider et al, Radiology
Functional diuretic MRU

Area-under-curve method
- observe & quantify signal over time
- fast 3D sequence or single slice

• Essential features:
 - signal linear to Gd-concentration
 • lower dose (0.05 mg/kg)
 - first 3-5 minutes
 • fast acquisition
 - late phases

Concentration CM [mmol/l]

Signal [normalized]

Riccabona, Pediatr Radiol & EJR ...
Functional diuretic MRU

Area-under-curve method

• unsolved aspects:
 - motion correction
Functional diuretic MRU

Area-under-curve method
- unsolved aspects:
 - motion correction
 - 3d-coverage

⇒ DMSA versus MRU - split renal size & function

single slice ± 3.1%

multi slice ± 1.7%
Functional diuretic MRU

- **Patlok plot method**
 - 2 compartment model
 - subtract arterial inflow (aorta)
- **Essential features:**
 - fast 3d sequence
 - dose = 0.1 mmol/kg
 - slow injection (0.1 ml/sec)

Sequence: TR = 3.2, TE = 1.1 msec
flip angle ≥30°

Functional diuretic MRU

• Potential
 - “one stop shop” imaging
 • entire anatomy (including vessels)
 • all functional information, including GFR & split size
 - perfusion, transit & excretion, urinary drainage
 - peristalsis, vitality ...
Functional diuretic MRU

- Restrictions
 - drainage?
 - sufficient function?
 - $T2^*$ effect, sedimentation
 - Patlok function for drainage?
 - single slice - proper section?
 - standardization
 - validation missing
 - restricted availability
 - DTPA versus MAG3
 - only glomerular filtration...

Grattan-Smith, Pediatr Radiol 2008, 2010
Functional diuretic MRU

• Restrictions
 - drainage? standardization, DTPA vs MAG3
 - sedations needs & options
 - still need high quality US
 - still may need VCUG
 - catheterism?
 - costs & availability
 - impact on treatment & outcome?
Which indications for MRU?

• **UPJO, UVJO / MU**

• **Duplication**
 - ectopic ureteral insertion, ureterocele
 - relative function upper vs. lower moiety
 • even non-/poorly functioning units assessable

• **Single & ectopic kidneys**
 - associated genital anomalies
 - cystic kidney remnants ...

• **Complex malformation, function**
When to image whom how?

- Usually post-natally confirmation by US
 - quality essential
 - just assess renal pelvis? bladder? ureter?
 - prone or supine?
 - diuresis? hydration? - age dependent!
 - timing depends on prenatal finding
 - bilateral HN? renal insufficiency?
 - degree of HN at which gestational age?
- other aspects: availability & access
 - equipment & expertise
 - physiologic renal immaturity, compliance ...
Postnatal imaging in newborns with fetally diagnosed mild hydrenephrosis

Antenatal diagnosis of mild to moderate HN

US: 1st US around day 5

Abnormal: pelvis ≥ 7(10) mm + dilated calices, or other anomalies

VCUG

Normal: pelvis ≤ 10 mm, otherwise normal

Stop follow-up

Abnormal

US at 3 mo

Normal: pelvis ≤ 10 mm, other changes

Further morphological & functional evaluation: scintigraphy, (IVU), MRU...

Abnormal

pelvis ≥ 10 mm, other malformation, “extended criteria”

US at 1 mo

Normal

Stop follow-up

Pediatr Radiol 2008; 38
Postnatal imaging in newborns with fetally diagnosed high grade hydronephrosis

Prenatal US: gross dilatation = HN≥IV°

VCUG, in all boys particularly if ureter dilated
ce-VUS in girls, potentially delayed

early US + VCUG

PUV

high grade VUR

obstructive uropathy

others *4

⇒ drainage renal function?
+ isotopes*2, MRU*3

US follow-up
6 mo: isotopes*2, MRU*3?

UPJO, MU *5

as indicated *5

*1 (US) genitography: in patients with single kidney, MCDK, ectopic kidney, suspected genital anomaly ...

*2 MAG3: better than DMSA in dilated systems and neonates, not before 6 weeks;
 + open bladder catheter to avoid VUR induced errors; DMSA preferably after 3 months

*3 MRU: complex anatomy, function, obstructive component ...

*4 e.g. MCDK, cystic dysplasia, duplex or horseshoe kidney, other malformation, non-obstructive HN, cysts/cystic tu ...

*5 see respective algorithm

Pediatr Radiol 2009: 39
Imaging algorithm in infants & children with suspected obstructive uropathy

- **US (+ DDS/CDS)**
 - **mild (HN <3°) x1**
 - **US follow-up hydration! CDS! diuretic US (?)**
 - **VUR/PUV x1**

- **HN ≥ III°**
 - **VCUG (ce-VUS?)**
 - **<6 weeks old**
 - **>6 weeks old**
 - **no VUR**
 - **clinical symptoms x3**
 - **potentially diuretic US(?)**

- **MAG3 (T+20) x4**
 - or (quantitative) **MRU or IVU (pre-op., if no MRU)**

- **deterioration x2**
 - **clinical symptoms x3**

- **non-obstructive normal function**

- **equivocal - also, if <3 mo + obstructive & normal function**

- **⇒ MAG3 (T-15), follow-up (after 3-6 mo) ...**

- **obstructive low function ⇒ OP (>3-6 mo)**

x1 as appropriate, see respective algorithm

x2 proposed imaging criteria for deterioration:
- on **MAG 3:** decreased (split) renal function & drainage, contra-lateral hypertrophy
 - on **US:** increasing dilatation, decreasing parenchymal width, echotecture, contra-lateral hypertrophy
 - decreased vascularity (on cCDS), asymmetrical RI (on PW-DDS), reduced peristalsis (in MU) or ureteric jet (asymmetrically in unilateral disease)

x3 Clinical criteria for deterioration: pain, infection, haematuria, (kidney) growth failure, hypertension

x4 assess drainage pattern and (split renal) function

Pediatr Radiol 2009: 39
Image and case examples

Typical findings and conditions
"When to do what"

... if we still have time ...
What are the challenges

- Can we know fetally or neonatally which kidney will need surgery?

Lessons we learned in the past:
- the grade of fetal HN does not always correlate with neonatal findings
What are the challenges

• Can we know fetally or neonatally which kidney will need surgery?

Lessons we learned:

➢ fetal HN grade ≠ neonatal finding
➢ low grade neonatal HN does not exclude future obstructive uropathy that may need surgery
What are the challenges

• Can we know fetally or neonatally which kidney will need surgery?

Lessons we learned in the past:

➢ fetal HN grade ≠ neonatal finding
➢ low grade HN does not exclude future severe HN
➢ established alternate non-obstructive diagnosis (VUR) does not rule out future obstruction
What are the challenges

- Can we know fetally or neonatally which kidney will need surgery?

Lessons we learned in the past:
- fetal HN grade ≠ neonatal finding
- low grade HN does not exclude future severe HN
- established alternative non-obstructive diagnosis (VUR) does not rule out future obstruction
- low grade neonatal HN does not allow reliable prediction of future development
 - particularly if US done relatively early
What are the challenges

• Can we know fetally or neonatally which kidney will need surgery?

Lessons we learned in the past:

- fetal HN grade \neq neonatal finding
- low grade HN does not exclude future severe HN
- established alternative non-obstructive diagnosis (VUR) does not rule out future obstruction
- low grade neonatal HN does not allow reliable prediction of future development
- HN may persist unchanged without deterioration
What are the challenges

- Can we know fetally or neonatally which kidney will need surgery?

Lessons we learned in the past:

- Fetal HN grade ≠ neonatal finding
- Low grade HN does not exclude future severe HN
- Neonatal HN does not predict future development
- Established alternative non-obstructive diagnosis (VUR) does not rule out future obstruction
- Neonatal HN may persist unchanged
- Neonatal high grade HN does not necessarily mean future surgery
Discussion

• Postnatal imaging in prenatal HN
 – depends on many factors
 • prenatal findings
 • local postnatal management
 – compliance ...
 • availability
 • health system
 – prenatal screening? socio-economic situation ..

• **Goal:** recognise relevant conditions
 – therapeutically necessary, without overkill
 • without missing important disease, prevent damage
Conclusion

• Postnatal imaging heavily relies on US + knowledge of prenatal findings
 • high quality US & proper timing essential
 • VCUG, MAG3, MRU irreplaceable, IVU outdated

• Additional imaging tailored according too
 – US result
 – therapeutic consequence
 – clinical query & situation
 • ALARA
 • avoid unnecessary exams
 – only assess relevant conditions
Any questions -

Yes, please, ... ??
Thank you!
ÖGUM-DEGUM recommendations

Minimaldokumentation: Anforderung für die Standarduntersuchung

Erweiterte Dokumentation: Wie Normalbefund + gezielter Zusatzschritte + weitere Zugangswege und Methoden

Bei Erstvorstellung ist die Untersuchung des gesamten Abdomens empfohlen (abdominelle Übersichtssonografie) – siehe "Standarddokumentation der Sonografie des kindlichen Abdomens".

http - www.oegum.at