Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients with osteoarthritis: a cross-sectional study

Christine Ballegaard (1), Robert Riis (1), Henning Bliddal (1), Robin Christensen (1), Marius Henriksen (1), Else Bartels (1), Stefan Lohmander (2), David Hunter (3), Rasmus Bouert (4) and Mikael Boesen (1,4)

1) Parker Institute, Bispebjerg and Frederiksberg Hospitals, Copenhagen F, Denmark
2) Department of Orthopaedics, Clinical Sciences Lund, Lund University, Sweden
3) Department of Rheumatology, Royal North Shore Hospital, University of Sydney, Australia
4) Department of Radiology, Bispebjerg and Frederiksberg Hospitals, Copenhagen F, Denmark
Acknowledgements:

• Oak foundation for donating the 3T Siemens Verio scanner

• Board of directors BBH and Frh Hospitals for supporting the

• Olga Kubassova and her team at Image analysis, Ltd London for support using the software Dynamika®

Disclosures:

• Mikael Boesen and Rasmus Bouert has acted as Independent non-paid clinical advisors for Dynamika on the clinical advisory board of Image Analysis Ltd, London.
Background:

In the knee, the intraarticular, extra synovial fat pad of Hoffa (infrapatellar fat pad (IPFP)) seems to play a crucial, but not fully understood, role in Knee Osteoarthritis (KOA)

Ioan-Facsinay and Kloppenburg Arthritis Research & Therapy 2013, 15:225
http://arthritis-research.com/content/15/6/225

REVIEW

An emerging player in knee osteoarthritis: the infrapatellar fat pad

Andreea Ioan-Facsinay* and Margreet Kloppenburg
Synovitis / inflammation in KOA
Contrast enhanced(CE)-MRI vs. non-CE MRI

Peripatellar synovitis: comparison between non-contrast-enhanced and contrast-enhanced MRI and association with pain. The MOST study

M.D. Crema †∥*, D.T. Felson §, F.W. Roemer †∥∥, J. Niu §, M.D. Marra †, Y. Zhang §, J.A. Lynch ¶, G.Y. El-Khoury #, C.E. Lewis ††, A. Guermazi †

In summary, we confirmed that signal changes in HFP detected on non-CE MRI are a sensitive but non-specific surrogate for the assessment of peripatellar synovitis. Our data suggests that CE MRI identifies associations of peripatellar synovitis with pain better than non-CE MRI. Assessment of synovitis should ideally be performed on CE MRI when possible.

Imaging of Synovitis in Osteoarthritis: Current Status and Outlook

Daichi Hayashi, MBBS,* Frank W. Roemer, MD,**†
Avinash Katur, MBBS, DNB,* David T. Felson, MD, MPH,*
Scoung-Oh Yang, MD,* Faris Alomran, MD,§ and Ali Guermazi, MD*

Conclusions: Synovitis is increasingly recognized as an important feature of the pathophysiology of OA, although there is conflicting evidence with respect to its association with disease severity and clinical parameters. Contrast-enhanced MRI and ultrasound are the most important methods for assessing synovitis associated with OA.

Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study

Ali Guermazi, Frank W Roemer, Daichi Hayashi, Michel D Crema, Jingbo Niu, Yuqing Zhang, Monica D Marra, Avinash Katur, John A Lynch, George Y El-Khoury, Kristin Baker, Laura B Hughes, Michael C Nevitt, David T Felson

Conclusions: A comprehensive semiquantitative scoring system for the assessment of whole-knee synovitis is proposed. It is reliable and identifies knees with pain, and thus is a potentially powerful tool for synovitis assessment in epidemiological OA studies.
Synovitis:

Non-Contrast Enhanced (CE) MRI vs. CE-MRI

Proton weighted fat sat T1 weighted fat sat + Gadolinium
Dynamic contrast enhanced (DCE)-MRI in inflammatory arthritis

DCE-MRI voxel by voxel model-based time intensity analysis
DCE-MRI model-based time intensity curve analysis – Dynamika® in KOA
Purpose:

To investigate the association between knee pain and signs of inflammation in the infrapatellar fat pad (IPFP) in obese patients with knee osteoarthritis (KOA) using both conventional CE-MRI and DCE-MRI derived from a 3T MRI scanner.

Methods:

95 KOA patients all participants in a weightloss trial "Carot light" (ClinicalTrials.gov identifier: NCT00938808) were included in the analysis.
MRI Protocol

MRI of the target knee was performed (image time 30-40 minutes)
- 3T Siemens Verio® system.
- Supine position using a dedicated 16-channel send/receive knee coil.

The following MRI protocol was used:
- Coronal T1-weighted (T1w) turbo spin echo (TSE)
- Coronal and Sagittal short tau inversion recovery (STIR);
- Sagittal 3D 0.6mm isotropic proton density weighted (PDw) FS TSE SPACE,
- Sagittal GRE 3D T1w 0.5mm volumetric interpolated breath hold examination (VIBE)

Simultaneously with the intravenous injection of 0.1 ml/kg body weight Gadolinium contrast (Prohance®, Bracco Diagnostics Inc., Italy) using a power injector (2 ml/s):

Axial DCE-MRI GRE T1w VIBE sequence
- 18, 5 mm slices every 9 s, with 30 repetitions
- TE 1.86, TR 5.51 FA 15 degrees, FOV 160x160, matrix resolution 192 x 138
- Covering the supra-patellar recess to the insertion of the patella tendon on the tibia.

Following this the static T1w sequences were repeated and used for MOAKS Hoffa synovitis scoring.
Material and Methods:

• **KOOS** (knee injury and osteoarthritis score) is self-reported outcomes on pain, symptoms and quality of life.

• **Hoffa synovitis** assessed according to the definitions in the MRI osteoarthritis knee score (**MOAKS**) for Hoffa synovitis using the 3D T1w CE-MRI.

• **DCE-MRI**
DCE-MRI Analysis

Investigators blinded to the clinical data and the KOOS answers analysed the MR images.

- **DCE-MRI images were analysed using Dynamika®:**
 - **Motion correction** to reduce the enhancement artefacts due to movement
 - **Region of interest (ROI)** around the IPFP in all the axial DCE-MRI images from the tip of the patella pole to the insertion of the patella tendon on tibia and summed into a **volume ROI (VOI)**.
 - The most proximal slice chosen for IPFP-scoring corresponded to the slice in which the patella was still visible.

- **Voxel-by-voxel time intensity curve analysis and** Gadolinium (GD), ME, IRE map were computed in the VOI
 - Perfusion variables used for further analyses:
 - \(\Sigma \text{IRE} \times (\text{N-plateau}+\text{N-washout}) \) ("Inflammation"),
 - \(\Sigma \text{ME} \times (\text{N-plateau}+\text{N-washout}) \),
 - N-plateau+N-washout (number of enhancing voxels)
 - Inflammation/volume of the IPFP within the drawn VOI
Hoffa’s fat pad examples of a region of ROI

Inter- and Intraclass coefficient (ICC):
DCE-MRI VOIs: 0.86-0.99
MOAKS Hoffa synovitis: 0.58 (single reader only intra-ICC)
<table>
<thead>
<tr>
<th></th>
<th>Inflammation</th>
<th>(\Sigma ME \times (N\text{-plateau} + N\text{-washout}))</th>
<th>N-plateau+N-washout</th>
<th>Inflammation/volume</th>
<th>Volume of the IPFP (ml)</th>
<th>MOAKS Hoffa-synovitis (0-3)</th>
<th>KL score (0-4)*</th>
<th>CRP (mg/l)*</th>
<th>Fat mass (%)</th>
<th>KOOS Pain</th>
<th>KOOS Symptoms</th>
<th>KOOS ADL</th>
<th>KOOS QOL</th>
<th>KOOS Sport/Rec</th>
<th>Sex (Female=1, Male=0)</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammation</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(\Sigma ME \times (N\text{-plateau} + N\text{-washout}))</td>
<td>0.93 (<0.0001)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>N-plateau+N-washout</td>
<td>0.87 (<0.0001)</td>
<td>0.98 (<0.0001)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Inflammation/volume</td>
<td>0.97 (<0.0001)</td>
<td>0.89 (<0.0001)</td>
<td>0.82 (<0.0001)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Volume of the IPFP (ml)</td>
<td>0.62 (<0.0001)</td>
<td>0.65 (<0.0001)</td>
<td>0.67 (<0.0001)</td>
<td>0.44 (<0.0001)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MOAKS Hoffa-synovitis (0-3)</td>
<td>0.62 (<0.0001)</td>
<td>0.63 (<0.0001)</td>
<td>0.57 (<0.0001)</td>
<td>0.61 (<0.0001)</td>
<td>0.35 (0.0005)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>KL score (0-4)*</td>
<td>0.50 (<0.0001)</td>
<td>0.55 (<0.0001)</td>
<td>0.55 (<0.0001)</td>
<td>0.43 (<0.0001)</td>
<td>0.51 (<0.0001)</td>
<td>0.30 (0.0034)</td>
<td></td>
</tr>
<tr>
<td>CRP (mg/l)*</td>
<td>0.19 (0.07)</td>
<td>0.13 (0.23)</td>
<td>0.15 (0.16)</td>
<td>0.17 (0.098)</td>
<td>0.13 (0.21)</td>
<td>-0.043 (0.68)</td>
<td></td>
</tr>
<tr>
<td>Fat mass (%)</td>
<td>-0.0013 (0.99)</td>
<td>-0.11 (0.28)</td>
<td>-0.18 (0.087)</td>
<td>0.077 (0.46)</td>
<td>-0.32 (0.002)</td>
<td>-0.021 (0.84)</td>
<td></td>
</tr>
<tr>
<td>KOOS Pain</td>
<td>-0.42 (<0.0001)</td>
<td>0.43 (<0.0001)</td>
<td>-0.43 (<0.0001)</td>
<td>-0.37 (0.0002)</td>
<td>-0.39 (0.0001)</td>
<td>-0.21 (0.046)</td>
<td></td>
</tr>
<tr>
<td>KOOS Symptoms</td>
<td>-0.51 (<0.0001)</td>
<td>0.47 (<0.0001)</td>
<td>-0.46 (<0.0001)</td>
<td>-0.49 (<0.0001)</td>
<td>-0.36 (0.0004)</td>
<td>-0.24 (0.021)</td>
<td></td>
</tr>
<tr>
<td>KOOS ADL</td>
<td>-0.33 (0.001)</td>
<td>-0.31 (0.003)</td>
<td>-0.30 (0.003)</td>
<td>-0.28 (0.006)</td>
<td>-0.33 (0.001)</td>
<td>-0.12 (0.25)</td>
<td></td>
</tr>
<tr>
<td>KOOS QOL</td>
<td>-0.43 (<0.0001)</td>
<td>0.42 (<0.0001)</td>
<td>-0.41 (<0.0001)</td>
<td>-0.40 (<0.0001)</td>
<td>-0.36 (0.0003)</td>
<td>-0.19 (0.066)</td>
<td></td>
</tr>
<tr>
<td>KOOS Sport/Rec</td>
<td>-0.36 (0.0004)</td>
<td>-0.36 (0.0004)</td>
<td>-0.36 (0.0004)</td>
<td>-0.33 (0.001)</td>
<td>-0.28 (0.006)</td>
<td>-0.12 (0.24)</td>
<td></td>
</tr>
<tr>
<td>Sex (Female=1, Male=0)</td>
<td>-0.17 (0.10)</td>
<td>-0.25 (0.015)</td>
<td>-0.29 (0.005)</td>
<td>-0.037 (0.72)</td>
<td>-0.51 (<0.0001)</td>
<td>-0.038 (0.72)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>0.065 (0.53)</td>
<td>0.060 (0.57)</td>
<td>0.018 (0.86)</td>
<td>0.086 (0.41)</td>
<td>-0.030 (0.78)</td>
<td>0.018 (0.86)</td>
<td></td>
</tr>
</tbody>
</table>

Data are from 95 subjects unless specified. Correlation coefficients (Spearman’s rho) are shown as the first value and the p-values are shown as the second value. Bold associations (p < 0.05) are indicated by bold. *Data from 94 subjects. Abbreviations: KOOS, Knee injury and Osteoarthritis Outcome Score (washout); ME, Maximal enhancement; Inflammation/volume, \(\Sigma IRE \times (N\text{-plateau} + N\text{-washout})\) divided by the volume of the infrapatellar Osteoarthritis Knee Score; KL, Kellgren-Lawrence; CRP, C-reactive protein; ADL, Function in daily living; QOL, Knee related Quality of life.
Primary Outcome Measures (Spearman’s rank correlation):

- KOOS pain and the perfusion variable, “Inflammation” (r=-0.42, p<0.0001)
- KOOS pain and MOAKS Hoffa-synovitis assessed on CE-MRI (r=-0.21, p<0.046)

Conclusion:

- MOAKS Hoffa-synovitis assessed on CE-MRI and especially the perfusion variables from DCE-MRI reflecting inflammation in the IPFP, were related to pain and clinical symptoms in obese patients with KOA.
- DCE-MRI analysed with a dedicated software and a voxel by voxel time intensity curve method is a promising, and reproducible method to study the impact of inflammation in KOA.
Thank you....😊